OAZ Uses Distinct DNA- and Protein-Binding Zinc Fingers in Separate BMP-Smad and Olf Signaling Pathways

نویسندگان

  • Akiko Hata
  • Joan Seoane
  • Giorgio Lagna
  • Ermelinda Montalvo
  • Ali Hemmati-Brivanlou
  • Joan Massagué
چکیده

We have identified the 30-zinc finger protein OAZ as a DNA-binding factor that associates with Smads in response to BMP2, forming a complex that transcriptionally activates the homeobox regulator of Xenopus mesoderm and neural development, Xvent-2. OAZ contains a BMP signaling module formed by two clusters of fingers that bind Smads and the Xvent-2 BMP response element, respectively. Previously implicated as a transcriptional partner of Olf-1/EBF in olfactory epithelium and lymphocyte development in the rat, OAZ fulfills this role through clusters of fingers that are separate from the BMP signaling module. The mutually exclusive use of OAZ by the BMP-Smad and Olf pathways illustrates the dual role of a multi-zinc finger protein in signal transduction during development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zfp423/OAZ mutation reveals the importance of Olf/EBF transcription activity in olfactory neuronal maturation.

Zfp423/OAZ, a multi-zinc finger protein, is proposed to participate in neuronal differentiation through interactions with the Olf/EBF (O/E) family of transcription factors and mediate extrinsic BMP signaling pathways. These activities are associated with distinct domains of the Olf/EBF-associated zinc finger (OAZ) protein. Sustained OAZ expression arrests olfactory sensory neurons (OSNs) at an ...

متن کامل

The N-terminus zinc finger domain of Xenopus SIP1 is important for neural induction, but not for suppression of Xbra expression.

Smad-interacting protein-1 (SIP1), also known as deltaEF2, ZEB2 and zfhx1b, is essential for the formation of the neural tube and the somites. Overexpression of Xenopus SIP1 causes ectopic neural induction via inhibition of bone morphogenetic protein (BMP) signaling and inhibition of Xbra expression. Here, we report the functional analyses of 4 domain-deletion mutants of XSIP1. Deletion of the ...

متن کامل

Nuclear factor YY1 inhibits transforming growth factor beta- and bone morphogenetic protein-induced cell differentiation.

Smad proteins transduce transforming growth factor beta (TGF-beta) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-beta and BMP, such as the...

متن کامل

Xbra and Smad-1 response elements cooperate in PV.1 promoter to inhibit the early neurogenesis in Xenopus embryos Running title-Both BMP-4/Smad-1 and FGF/Xbra activates PV.1 expression

Crosstalk of signaling pathways plays crucial roles in cell fate determination, cell differentiation and proliferation. Both BMP-4/Smad-1 and FGF/Xbra signaling induce the expression of PV.1, leading to neural inhibition. However, BMP-4/Smad-1 and FGF/Xbra signaling crosstalk in the regulation of PV.1 transcription is still largely unknown. In this study, Smad-1 and Xbra physically interacted a...

متن کامل

The zinc finger protein schnurri acts as a Smad partner in mediating the transcriptional response to decapentaplegic.

In Drosophila, a BMP-related ligand Decapentaplegic (Dpp) is essential for cell fate specification during embryogenesis and in imaginal disc development. Dpp signaling culminates in the phosphorylation and nuclear translocation of Mothers against dpp (Mad), a receptor-specific Smad that can bind DNA and regulate the transcription of Dpp-responsive genes. Genetic analysis has implicated Schnurri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2000